ON A CLASS OF GROUPS OF PRIME-POWER ORDER

BY

J. W. WAMSLEY

ABSTRACT

Let G be a finite p-group, $d(G) = \dim H^1(G, Z_p)$ and $r(G) = \dim H^2(G, Z_p)$. Then d(G) is the minimal number of generators of G, and we say that G is a member of a class \mathscr{G}_p of finite p-groups if G has a presentation with d(G) generators and r(G) relations. We show that if G is any finite p-group, then G is the direct factor of a member of \mathscr{G}_p by a member of \mathscr{G}_p .

1.

Let G be a finite p-group. We have

$$d(G) = \dim H^1(G, Z_p),$$

$$r(G) = \dim H^2(G, Z_n),$$

d(G) being the minimal number of generators of G. If there is a presentation

$$G = F/R = \{x_1, \cdots, x_n \mid R_1, \cdots, R_m\}$$

where F is the free group on x_1, \dots, x_n , n = d(G), and R is the normal closure in F of R_1, \dots, R_m , we have always

$$m \ge r(G) = d(R/[F, R]R^p).$$

We say that G belongs to a class \mathscr{G}_p of finite p-groups if there is a presentation with n = d(G) and m = r(G). Such a presentation is said to be minimal. It is well known (see for example [1]) that if G and H are finite p-groups then

$$r(G \times H) = r(G) + r(H) + d(G)d(H)$$

and hence $G, H \in \mathscr{G}_p$ implies $G \times H \in \mathscr{G}_p$.

The question is asked in [1] whether G, $G \times H \in \mathscr{G}_p$ implies $H \in \mathscr{G}_p$. In this paper we show that if H is any finite p-group, then there exists a finite p-group

Received November 2, 1971

J. W. WAMSLEY

Israel J. Math.,

 $G \in \mathscr{G}_p$ such that $G \times H \in \mathscr{G}_p$. Hence it follows that $G, G \times H \in \mathscr{G}_p$ implies $H \in \mathscr{G}_p$ if and only if every finite *p*-group belongs to \mathscr{G}_p .

2.

It is shown in [2] that if G is a finite p-group, then G = F/R where F is free on d(G) generators and R is generated as a normal subgroup of F by r(G) elements modulo [R, R]. That is if d(G) = n, r(G) = m and R has free generators S_1, \dots, S_r , then G has a presentation

$$G = F/R = \{x_1, \dots, x_n | R_1, \dots, R_m, [S_i, S_j]; i, j = 1, 2, \dots, t\},\$$

where [u, v] denotes the commutator $u^{-1}v^{-1}uv$.

Note that t is finite. In fact, t = 1 + (n-1)|G|.

Let H be any group in \mathscr{G}_p (say, an elementary abelian group) with $r(H) \ge t$, presented as

 $H = \{v_1, \dots, v_{HT} \mid T_1, \dots, T_{T}(T)\}$

and put

$$K = \{x_{1}, \dots, x_{n}, y_{1}, \dots, y_{d(H)} | R_{1}, \dots, R_{m}, \\T_{i}S_{i}^{-1}, \quad 1 \leq i \leq t, \\T_{i}, \quad t < i \leq r(H), \\[x_{i}, y_{i}], \quad 1 \leq i \leq n, \ 1 \leq j \leq d(H)\}$$

Then $K = G \times H$ can be seen by observing that the subgroups X, Y of K generated by the x_i , y_j , respectively, centralize each other, and the S_i lie in their intersection, hence in the centre of X. Therefore, $[S_i, S_j] = 1$, and because of the R_i , we have $S_i = 1$ and, therefore, $T_i = 1$.

Therefore the presentation given for K is minimal and K belongs to \mathscr{G}_p . However H belongs to \mathscr{G}_p and we have proved the following:

THEOREM. Let G be a finite p-group. Then G is the direct factor of a member of \mathscr{G}_p by a member of \mathscr{G}_p .

REFERENCES

1. D. L. Johnson and J. W. Wamsley, *Minimal relations for certain finite p-groups*, Israel J. Math. 8 (1970), 349-356.

2. J. W. Wamsley, The multiplicator of finite nilpotent groups, Bull. Austral. Math. Soc. 3 (1970), 1-8.

SCHOOL OF MATHEMATICS

THE FLINDERS UNIVERSITY SOUTH AUSTRALIA BEDFORD PARK

298